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van der Werf et al., 2004 
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Fire aerosol emissions - an introduction 

second indirect effect: aerosols increase 
cloud lifetime, reduce precipitation (?) 
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Global !re forcing (aerosols) 
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Ø  Global radiative forcing (RF) from all aerosols is –0.5 W m-2  

Ø RF from fire aerosols is +0.005 W m-2  
from: Bauer et al., 2012 
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Hypotheses 
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1.  Fires in tropical Asian peat forests generally smolder 
and are injected within the boundary layer. 

2.   Climate impacts of "re aerosols during El Niño 
drought provide evidence of a positive feedback. 

3.  Global climate is strongly in#uenced by the radiative 
and microphysical effects of "re aerosols; tropical 
forests near source regions are particularly 
vulnerable to climate changes. 



southeast + equatorial Asia 

1. Introduction / Background    2. Plumes in equatorial Asia    3. Fire-climate feedbacks    4. Future work    5. Conclusions 
Ø  Burning in equatorial Asia (Indonesia, Malaysia, Papau New Guinea)   



Borneo 

Sumatra 

Map of equatorial Asia 

1. Introduction / Background    2. Plumes in equatorial Asia    3. Fire-climate feedbacks    4. Future work    5. Conclusions 
Ø  Burning in equatorial Asia (Indonesia, Malaysia, Papau New Guinea)   



Link between ENSO and !re 

1. Introduction / Background    2. Plumes in equatorial Asia    3. Fire-climate feedbacks    4. Future work    5. Conclusions 
Ø  Burning in equatorial Asia (Indonesia, Malaysia, Papau New Guinea)   

Δ
 °

C 

El Niño 

La Niña 



Link between ENSO and !re 

1. Introduction / Background    2. Plumes in equatorial Asia    3. Fire-climate feedbacks    4. Future work    5. Conclusions 
Ø  Burning in equatorial Asia (Indonesia, Malaysia, Papau New Guinea)   

Δ
 °

C 

El Niño 

La Niña 

Tg
 m

on
th

-1  



Link between ENSO and !re 

1. Introduction / Background    2. Plumes in equatorial Asia    3. Fire-climate feedbacks    4. Future work    5. Conclusions 
Ø  Burning in equatorial Asia (Indonesia, Malaysia, Papau New Guinea)   

Tg
 m

on
th

-1  

El Niño 

La Niña 

Δ
 °

C 



Link between ENSO and !re 

1. Introduction / Background    2. Plumes in equatorial Asia    3. Fire-climate feedbacks    4. Future work    5. Conclusions 
Ø  Burning in equatorial Asia (Indonesia, Malaysia, Papau New Guinea)   

Δ
 °

C 

El Niño 

La Niña 

Tg
 m

on
th

-1  



Fire during El Niño driven by low precipitation 
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from: van der Werf et al., 2008 

Ø  Exponential relationship; almost 
piecewise w/ critical value ~100 mm 
month-1 

 

Ø  High burning in 1997 and 2006 
associated with average dry season 
precipitation ~50 mm month-1 

 

Ø  Very low burning in 1998, 1999, 2000 
associated with average dry season 
precipitation >150 mm month-1 



Fire during El Niño driven by low precipitation 

1. Introduction / Background    2. Plumes in equatorial Asia    3. Fire-climate feedbacks    4. Future work    5. Conclusions 
Ø  Burning in equatorial Asia (Indonesia, Malaysia, Papau New Guinea)   

Ø  Fairly recent phenomenon, especially on Borneo, associated with 
changing migration/settlement patterns 

from: Field et al., 2009 

Visibility records from airports record no 
signi"cant smoke events prior to 1985 
despite incidence of drought and El Niño. 



Extreme !re events during El Niño 
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from: Tosca et al., 2011 

Ø  10-year time series of !re in equatorial Asia from MODIS/MISR 

Ø Gray bars indicate El Niño events; 80% of !res during 2001-2009 during El Niño 
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from: Tosca et al., 2011 

INITIAL QUESTION: At what vertical level is smoke primarily injected? 

 

WHY WE CARE: Spatially expansive regions of smoke have potentially 
large climate effects; how do we represent smoke plumes in a climate 
model? 
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Plume locations - insight on injection height? 
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from:Tosca et al., 2011 

Ø  75% of plumes in “peat forests” - high soil carbon, high moisture content 

Ø  How will this affect injection height? 

2. Digitized 317 plumes on Borneo and Sumatra from 2001-2009 

peat forest 

“other” rainforest 
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Ø  96% of all plumes injected into the Atmospheric Boundary Layer (ABL) 

Ø  Plumes on Borneo higher during El Niño (dry years), possibly owing to high ABLs 

Mean height (El Niño) = 724 ± 16 m 

Mean height (La Niña) = 633 ± 23 m 

El Niño 
La Niña 
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Ø  Over time, plumes evolve into “smoke clouds” — regionally expansive, persistent 

Ø  “Smoke clouds” are higher, cover more 
area, more climatologically important. 
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Ø  Over time, plumes evolve into “smoke clouds” — regionally expansive, persistent 

Ø  Results from CALIPSO con!rm MISR observations. 
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August-October average aerosol optical depth 
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“high !re” “high !re – low !re” 
MISR 

MODIS 

CAM3 

(02, 04, 06) –  
(00, 01, 03, 05) 

97 – 00 

How does climate respond to an aerosol forcing of this magnitude? 
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Podgorny et al., 2003 



Method for simulating climate response 
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Ø  Climate response to smoke aerosols in equatorial Asia   

1.  Force the Community Atmosphere Model (CAM3) w/ monthly-
varying, annually repeating 1997 !re emissions from GFED, version 
21  

2.  Force a second simulation with repeating 2000 !re emissions from 
GFEDv2. 

3.  Smoke injected into the boundary layer – consistent with injection 
height work. 

4.  Aerosols interacted with radiation directly but not cloud 
microphysics, therefore our simulations consider the direct and 
semi-direct effects 

5.  Each simulation was: 10 year spin-up (not included in averages) + 
30 year annually-repeating. 

6.  “Anomalies” are the difference between HIGHFIRE and LOWFIRE. 

1van der Werf et al., 2006 
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Mechanisms for precipitation response 

1. Introduction / Background    2. Plumes in equatorial Asia    3. Fire-climate feedbacks    4. Future work    5. Conclusions 
Ø  Climate response to smoke aerosols in equatorial Asia   

Ø  Large area of reduced surface temperatures 

Ø  Increased solar heating aloft 

Ø  Increase subsidence at the surface, limit 
convection = reduce precipitation. 

from: Tosca et al., 2010 

Aug-Oct Temp (ºC) 

Sept 

Aug-Oct Divergence (x10-6 s-1) 
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‘indirect 
effects’ — do 
they change 
the sign? 
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Ø  Climate response to smoke aerosols globally   

BIG QUESTION: WHAT IS THE GLOBAL CLIMATE IMPACT OF FIRE AEROSOLS? 

 

Caveat: We want to accurately simulate the magnitude of the forcing – 
requires matching simulated optical depths to observations. 

from: Tosca et al., 2012 



Method for simulating climate response 

1. Introduction / Background    2. Plumes in equatorial Asia    3. Fire-climate feedbacks    4. Future work    5. Conclusions 
Ø  Climate response to smoke aerosols globally   

1.  Force Community Atmosphere Model, version 5 (CAM5) with monthly 
varying emissions from 1997–2009. 

2.  Scale emissions in burning regions by optimizing simulated optical depths 
using MISR/MODIS satellite data 

3.  Experimental simulations: 

A.  15-year spin-up; 4 cycles of monthly repeating emissions (1997-2009), 
52 years total (FIRE) 

B.  15-year spin-up; no smoke emissions, all other variables same as (A).                   
(NOFIRE) 

4.  Climate “response” to !re aerosols is interpreted as FIRE – NOFIRE. 
Simulations consider direct, semi-direct, & indirect effects 

 

from: Tosca et al., 2012 
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from: Tosca et al., 2012 



Optical depth “forcing” 
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from: Tosca et al., 2012 

Ø  Globally, aerosol optical depth increased 13% (+0.02) due to !re aerosols 

stippling is 95% con!dence interval (student t-test) 
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Ø  All-sky net surface radiation decreased 1% (1.7 W m-2) 
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Ø  Largest response near the equator 

Ø  Optical depth peaked near 5°N 
during DJF and 5°S during JJA 

Ø  Major reduction in precip near the 
equator during all seasons 

… do "re aerosols alter the Hadley circulation? 



Precipitation response - circulation changes? 
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Ø  Though precipitation declined globally, there were large decreases at the equator, countered by                             
slight increases to the north and south.  

Ø  Reductions over tropical forests = !res may increase their vulnerability to climate change 
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Ø Diagnose Hadley Circulation using mass meriodional stream function (ψ), 

Which is equal to the rate at which mass is being transported meridionally (with positive 
values indicating northward transport) between that pressure level and the top of the 

atmosphere  
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shaded = upward velocities 
(convection) 
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from: Tosca et al., 2012 

mid-troposphere heating from BC absorption 

+ 

surface cooling (especially in equatorial regions) 

= 

weakened equatorial convection 

= 

weaker Hadley circulation,  

slight poleward expansion of descending branches 
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Hadley circulation changes 
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Ø  Climate response to smoke aerosols globally   

from: Tosca et al., 2012 

Ø  Data from ECMWF matches well 
with output from CAM5  

Ø  Weaking of the streamfunction 
near the equator - in regions of 
highest AOD.  

Ø  Slight expansion of the Hadley cell 
– consistent with Allen et al., (2012) 
and mid-latitude BC warming 

Annually-averaged ψ 



Total tropical forest ecosystem response to !re aerosols 
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Ø  Ecosystem response to !re   

Ø  Climatic changes (precipitation, temperature)  

Ø Direct deposition of nutrients (from aerosols) on ecosystems 

Ø  Changes in albedo / surface #uxes 

Ø  More diffuse radiation from aerosols 
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In conclusion 

1. Introduction / Background    2. Plumes in equatorial Asia    3. Fire-climate feedbacks    4. Future work    5. Conclusions 
Ø  Conclusions   

(1)  Indonesian smoke plumes are injected into the boundary layer;                                 
burning occurs primarily in peat forests and during El Niño. 

(2)  More expansive smoke clouds are higher than plumes, impact climate via 
radiative and microphysical effects 

(3)  Direct "re aerosol forcing (in eq. Asia) during strong burning years 
reduces precipitation, increases drought stress and suggests a positive 
feedback between "re and drought. 

(4)  Globally, "re aerosols contribute ~13% to total aerosol optical depth; 
reduce surface temperatures 0.3°C 

(5)  Reduced equatorial convection (from surface cooling, atmospheric 
heating, indirect effects) weakens the Hadley circulation; mid-
tropospheric BC warming increases tropical width 
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